nilai n dari persamaan (n+2)!/(n+2-4)! = 6 n!/(n-4)!2! adalah ......
a. 2
b. 3
c. 5
d. 6
e. 11
a. 2
b. 3
c. 5
d. 6
e. 11

Jawab:
faktorial
[tex]\sf \dfrac{(n+2)!}{(n+2-4)!} = \dfrac{6 n!}{(n-4)!.2!}[/tex]
[tex]\sf \dfrac{(n+2)!}{(n-2)!} = \dfrac{3 n!}{(n-4)!}[/tex]
syarat n ≥ 4
[tex]\sf \dfrac{(n+2)!}{n!} = \dfrac{3 (n-2)!}{(n-4)!}[/tex]
[tex]\sf \dfrac{(n+2)(n+1) n!}{n!} = \dfrac{3 (n-2)(n-3)(n-4)!}{(n-4)!}[/tex]
[tex]\sf (n+2)(n+1) = 3 (n-2)(n-3)[/tex]
n² + 3n + 2 = 3(n² - 5n + 6)
n² + 3n + 2 = 3n² - 15n + 18
3n²- n² - 15 n - 3n + 18 - 2 =0
2n² - 18 n + 16= 0
n² - 9n + 8 =0
(n- 1)(n -8) =0
n = 1 atau n = 8
syarat n ≥ 4
n = 8